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SUMMARY

Finite element solutions are presented for the flow of Newtonian and non-Newtonian fluids around a
sphere falling along the centreline of a cylindrical tube. Both rotating and stationary tube scenarios are
considered. Calculations are reported for three different inelastic constitutive models that manifest
shear-thinning, extension-thickening and their combination. The influence of inertia and these various
forms of viscous response are examined for their influence upon the drag on the settling particle and the
structure of the flow. Simulations are performed by employing a semi-implicit time marching Taylor–
Galerkin/pressure-correction finite element algorithm, a fractional-staged scheme of second-order-accu-
racy. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The presence and motion of particles in Newtonian or non-Newtonian fluids is ubiquitous.
They are of fundamental importance in many natural and physical processes and in a large
number of industrial applications such as chemical, genetic and biomedical engineering
processes. Over the past three decades, there has been an increasing recognition of the
non-Newtonian flow characteristics displayed by many common materials. The study of the
behaviour of settling particles in a fluid medium has been a classical problem in fluid
mechanics and in rheology. Of the theoretical, experimental and numerical studies available in
the literature the majority deal with Newtonian fluids [1,2]. Conversely, for non-Newtonian
fluids the problem is considerably more complex and the analysis depends on the particular
fluid model adopted [3].

One practical problem is to determine the rate of settling of particles. Such knowledge is
particularly significant in determining, e.g. the shelf life of materials such as foodstuffs,
cleaning materials and many others. Also, in oil and gas drilling it is important to understand
the distribution of loose material, removed by the drill bit and carried to the surface by the
drilling mud. Concentrations of such material can have catastrophic consequences, causing
failure in the drilling operation and incurring vast expense [1–3].
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It is well-recognised that extensional behaviour in non-Newtonian fluids plays a major role
in complex flows. Most non-Newtonian fluids, such as polymeric solutions and melts, exhibit
shear-thinning and extension-thickening behaviour [4,5]. However, it is not straightforward to
segregate extensional and shear properties within the constitutive modelling as they are
intimately related. In the present study, consideration is given to the behaviour of a class of
generalised Newtonian fluids which, in three-dimensional flows, exhibit shear and extensional
behaviour, whilst being dissociated from the complications of memory effects. The inelastic
viscosity is prescribed as a function of the second and third invariant of the rate of
deformation tensor [6].

The motion of a spherical particle falling along the centreline of a stationary cylindrical tube
has received much attention as a benchmark problem over the last decade, with particular
interest in the effect of surrounding container walls on the rate of settling. The underlying
theory is well established for Newtonian fluids; for non-Newtonian flows, the problem is more
challenging. The drag coefficient or wall correction factor on the sphere can either increase or
decrease, depending on the precise model chosen. For Newtonian fluids, exact and approxi-
mate theoretical solutions have been given by Bohlin [7], and Haberman and Sayre [8]. Fayon
and Happel [9] gave a semi-empirical equation for the drag coefficient as a function of
Reynolds number. Theoretical and experimental results on associated pressure drops have been
reported by Feldman and Brenner [10]. Analytical solutions for Newtonian fluids are available
to calibrate numerical solutions and to determine their accuracy. Extension into the non-New-
tonian regime is the ensuing challenge.

Theoretical solutions for the slow flow of an inelastic fluid past a sphere are available in the
literature, e.g. those cited by Kawase and Moo-Young [11]. Experimental results on the
problem include the works of Oh and Lee [12] and Chhabra and Uhlherr [13]. Non-Newtonian
numerical results are attributed as follows: finite element results (FEM) of Gu Dazhi and
Tanner [14] and Graham and Jones [15] for a power-law model, and Debbaut and Crochet [6]
and Oh and Lee [12] for a shear and extension-rate dependent model. Also, boundary element
results (BEM) have been reported by Bush and Phan-Thien [16] and Zheng et al. [17] for a
Carreau model. The drag coefficient induced on the falling sphere in a viscoelastic flow has
been studied extensively and a comprehensive survey is reported on the matter by Chhabra [3].

The corresponding rotating flow has also been the subject of several theoretical and
experimental investigations, such as that given by Taylor [18] for unbounded Newtonian flows.
These flows are characterised by a Taylor number, Ta=rva2/mo, Reynolds number, Re=
rVsa/mo and Rossby number, Ro=Vs/va=Re/Ta, where a is the sphere radius, Vs is the
sphere velocity, v is the solid body rotation rate, r is the fluid density and, mo is the viscosity.
Taylor showed that a slowly translating sphere in a rotating fluid is accompanied by a fluid
column parallel to the rotating axis. Inside this column the fluid was pushed along in front of
the sphere. These ‘Taylor columns’ form in an unbounded fluid when the convective accelera-
tion is small. Pritchard [19] showed that a Taylor column appears in an unbounded fluid when
the Rossby number is less than 0.7.

The drag force on the falling sphere has complicated dependency on the sphere velocity and
the solid body angular rotation. Maxworthy [20] has measured the drag for small Reynolds
and Taylor numbers in both the bounded (with small sphere to cylinder radius ratio) and
unbounded instances. Most of the theoretical results in the literature are for unbounded
Newtonian flows. For unbounded rotating flows, the first attempt to solve an initial-value
problem for an inviscid fluid was that by Grace [21]. Subsequently, Stewartson [22] derived an
exact expression. Childress [23] studied the viscous problem for very small Reynolds and
Taylor numbers, and determined a first correction to the Stokes drag. Weisenborn [24] used the
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method of induced forces to determine the drag for an arbitrary Taylor number. More
recently, Tanzosh and Stone [25] have presented theoretical and numerical results for the
viscous case. Dennis et al. [26] calculated the drag numerically for small Taylor and Reynolds
numbers. A theoretical solution is available for unbounded rotating Newtonian flow [22–25].
However, for bounded rotating flows, the problem defies analytic solution and demands
numerical resolution.

The objective of the present study is to conduct numerical simulations for the settling of
particles in either Newtonian or non-Newtonian fluids, considering both the rotating and
non-rotating surrounding cylinder problems. A variety of constitutive models are considered,
including Newtonian, shear-thinning, extension-thickening and combined shear-thinning and
extension-thickening formulations. The influence of inertia and viscosity on the drag and the
structure of the flow are investigated in some detail. The present work employs a Taylor–
Galerkin finite element method to analyse the problem, in combination with a fractional-
staged projection method. This employs a semi-implicit time stepping scheme, prior to a spatial
Galerkin discretisation that is both stable and second-order-accurate. Both direct and iterative
solvers are invoked, and an element-wise approach is adopted to circumvent the difficulty of
dealing directly with a complete system matrix. The algorithm is described in extensive detail
in Hawken et al. [27].

2. GOVERNING EQUATIONS

2.1. Equations of motion

A cylindrical co-ordinate system (r, u, z) is appropriate to define the problem, assuming
axisymmetry. Without loss of generality, the problem statement is presented for the rotating
instance, the non-rotating case being a straightforward simplification. Non-dimensional vari-
ables and scales are introduced as

r*=
r
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where t represents time, L a characteristic length (sphere radius a), V a characteristic velocity
(sphere velocity, Vs) and mo a constant reference viscosity. Fluid parameters are velocity
7= (6r, 6u, 6z), pressure p, density r and viscosity m. For brevity, * notation is elected by
implication. Under isothermal conditions, the non-dimensional equations that describe the
steady motion of a falling sphere in an incompressible inelastic fluid, along the centreline of a
rotating cylindrical tube of infinite length, are
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In the non-rotating case, the azimuthal velocity component vanishes and Equation (2b) is
trivially satisfied.

2.2. Constituti6e equations

Most non-Newtonian fluids in steady shear exhibit shear-thinning behaviour. Alternatively,
in steady extension many fluids display a viscosity that increases with an increase in extension
rate. There has been significant interest expressed in identifying a simple constitutive equation
that will adequately account for both shear and extensional response [6,12,28]. Some viscoelas-
tic constitutive equations can account for both shear-thinning and extension-thickening
behaviour [5]. However, such models are encumbered by material memory that complicates the
analysis and prediction. An inelastic constitutive equation is adopted here to model this mixed
shear and extension regime. Three constitutive models are chosen, namely a shear-thinning
model and an extension-thickening model of Debbaut and Crochet [6], and a combined
shear-thinning and extension-thickening model. These models allow the investigation of the
effects of shear and extensional viscosity independently, and in their combination, being
defined as

Model 1: m(g; )= [1+ (Weg; )2](n−1)/2, (3a)

Model 2: m(o; )=cosh(mWeo; ), (3b)

Model 3: m(g; , o; )= [1+ (Weg; )2](n−1)/2 cosh(mWeo; ), (3c)

where n is a power-law index, m is a material constant, g; is a shear rate and o; an extension rate.
The non-dimensional number We is

We=
lV
L

, (4)

where l is a time constant. The shear rate and extension rate are defined by the second
invariant, IID= (1/2) tr(D2) and third invariant, IIID=det D, of the rate of deformation
tensor, D=1/2(97+97T), via

g; =2
IID, (5)

o; =3IIID

IID

. (6)

For an axisymmetric rotating flow, the second and third invariant of the rate of deformation
tensor are given as
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3. NUMERICAL ALGORITHM

3.1. Discretisation of the system

A semi-implicit version of the Taylor–Galerkin–pressure-correction finite element discretisa-
tion has been employed in this study for primary solution variables of velocity and pressure.
A full description of the numerical scheme is provided in Hawken et al. [27]. A temporal
discretisation in a Taylor series expansion is performed before a spatial Galerkin discretisation,
to extract the time stepping scheme. The method adopts a Lax–Wendroff approach, revisited
in the finite element context. The pressure-correction scheme is a fractional step method that
is employed to resolve the incompressibility constraint. This scheme is compatible with a
Taylor–Galerkin implementation, guaranteeing second-order-accuracy and stability. Com-
bining a pressure correction scheme for temporal increment on pressure with a predictor-cor-
rector Taylor–Galerkin scheme, provides the basis for the present second-order numerical
scheme. In a semi-implicit formulation, the diffusion term is treated implicitly in a Crank–
Nicolson manner, whilst convection terms are treated explicitly. This choice removes a
diffusive stability restriction that would result from a fully explicit time stepping scheme.

The various fractional stages are described as follows. At a first fractional stage a
non-solenoidal velocity field is computed using a half time-step, and a predictor-corrector
scheme over the full time-step. In the first half time-step (n+1/2), the predictor, the velocity
is computed from data at time level (n); while in a second half time-step, the corrector, the
solutions at time steps (n) and (n+1/2) are used to calculate an intermediate non-solenoidal
velocity field. Subsequently at a second stage, a Poisson equation for the difference in pressure
over the time step is determined. At a third and final stage a solenoidal velocity field is
evaluated as a correction, based on the temporal pressure difference. This completes a time
step cycle. The system of equations at step one and three are governed by mass matrices
resulting from discretisation of time derivatives. These are solved using iterative methods. At
step two, the pressure stiffness matrix equation is solved directly using a Choleski method. In
the Galerkin spatial discretisation, piecewise continuous quadratic (f) and linear (c) functions
are employed to approximate the velocity components, V(x, t), and pressure, P(x, t), respec-
tively, over triangular subdivisions of the domain as
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V(x, t)=Vj(t)fj(x), P(x, t)=Pl(t)cl(x). (10)

The fully discrete equation system is represented as
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where n is a time step index, Vn is a nodal velocity vector at time tn, V* is an intermediate
non-solenoidal velocity vector, P is a pressure vector at time tn, Qn+1=Pn+1−Pn, Fn is a
forcing function vector due to boundary conditions at time tn, M is a consistent mass matrix,
S is a momentum diffusion matrix, N(V) is a convection matrix, L is a divergence/pressure
gradient matrix, K is a pressure stiffness matrix and u is the time stepping splitting factor on
the pressure gradient terms. The system matrices are defined as
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Repeated indices imply summation taken over i and j for all velocity nodal points, and k and
l for all vertex pressure nodal points on the triangular meshes. For second-order-accuracy in
time, the Crank–Nicolson choice of u=0.5 is adopted. The forcing vector F vanishes
identically, as there are no body forces acting.

3.2. Drag on the sphere

A Taylor–Galerkin finite element solution provides nodal values for both the velocity and
pressure. Drag coefficient calculations involve the gradients of these primary variables.
Gradients are discontinuous on the domain and must be postprocessed from the relevant fields
to yield continuous representations. Levine [29] has shown that the average of the normal
derivatives on either side of a triangle edge are superconvergent (gradient of greater accuracy
within an element) at midpoints of the element. The existence of superconvergent points at
midpoints of the element sides is of significance in the direct recovery method used here.
Non-unique values are recorded at the nodal points at each midside node in adjoining
elements. The values of the gradients are calculated by averaging at the midside nodes.
Gradients at vertex nodes are calculated by averaging the nodal gradient contributions in
elements which share that node. The advantage of the direct recovery method is the superior
accuracy it may access, reliant on the superconvergent properties available. Further details on
this direct method can be found in Hawken et al. [30].

The dimensionless drag force on a moving sphere is evaluated by integrating the pressure
and stresses over the sphere surface that may be represented as

D=2pa2 &
0

p �
m
�(6z
(r

+
(6r
(z

�
sin u+

�
−p+2m

(6z
(z

�
cos u

n
sin u du. (12)

The so-called Stokes drag force on a sphere falling in an unbounded Newtonian fluid is given
by

D�=6pmaVs. (13)
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The wall correction factor or drag coefficient of a sphere falling in a bounded fluid is defined
through

K=
D

D�
. (14)

4. PROBLEM SPECIFICATION

The problem is illustrated schematically in Figure 1. The cylindrical tube rotates about the
z-axis at rotation rate v and moves past the sphere at velocity Vs. In the stationary cylinder
case, v vanishes. The sphere to cylinder radius ratios, a/R of 0.5 and 0.2 are chosen to
illustrate the influence of different geometric ratios.

Figure 1. Schematic diagram of a sphere falling through a rotating fluid in a cylinder.
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Table I. Summary of finite element meshes, a/R=0.5

Sphere surface nodes ElementsMesh Nodes

40011M1 891
1600 3381M2 21

M4 13 16141 6400

The non-linearity of the system of equations and the formation of steep velocity and stress
gradients around the sphere surface render numerical calculations for flows with inertial and
non-Newtonian behaviour more difficult than for their low Reynolds number Newtonian flow
counterparts. Sufficiently large upstream and downstream cylinder lengths are selected in order
to sustain fully developed entry and exit flow and avoid end effects. For both geometric ratios
selected, the upstream length is equal to the downstream length, taken as 40a for a/R=0.5 and
20a for a/R=0.2. These specifications are chosen by empirical investigation to satisfy fully
developed flow to within O(0.01%).

For a/R=0.5, the flow domain is meshed by employing non-uniform conformal mapping,
a technique which automatically aligns element sides with streamlines. In this case, three
structured finite element meshes are used, as listed in Table I and shown in Figure 2. Meshes

Figure 2. Mesh patterns around sphere, a/R=0.5.
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Table II. Summary of finite element meshes, a/R=0.2

Sphere surface nodes ElementsMesh Nodes

64421AM1 1401
2035948AM2 31

1242 2645AM3 41

M2 and M4 are hierarchical h-refinements of M1 and M2 respectively, where each triangular
parent element is divided into four elements by connecting the midside nodes of parent
elements. The order of approach adopted was first to analyse the case of a/R=0.5 with a
structured mesh option. When the wider gap scenario of a/R=0.2 was subsequently consid-
ered, it became apparent that a more localised treatment through unstructured meshing was
preferential, essentially to capture the flow phenomena more tightly in the vicinity of the

Figure 3. Mesh patterns around sphere, a/R=0.2.
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sphere surface where most activity occurs. Unstructured meshes are more flexible, introducing
localised spatial resolution where necessary, and are more economical in run time. For
a/R=0.2, three unstructured meshes, AM1, AM2 and AM3, are generated by an adaptive
mesh generator, as given in Table II and shown in Figure 3. In each case, the flow domain is
meshed with a fine mesh in the vicinity of stagnation points and sphere surface, while using
coarser meshing elsewhere. The grading of meshes is employed to confirm solution accuracy
through mesh refinement.

For any chosen value of the Reynolds number, computation commences from quiescent
initial conditions. Subsequently, for each value of a particular parameter space explored, the
time-stepping procedure is accelerated by adopting prior value steady state solutions as
start-up conditions. A relative increment time-stepping termination tolerance is selected of the
order of 10−6 to detect convergence to a steady state. The following boundary conditions
apply for the rotating cylinder problem

At the inlet of the flow: 6r=0, 6u=rv and 6z=Vs,
Along the cylindrical tube (r=R): 6r=0, 6u=Rv and 6z=Vs,
Along the centreline of the cylindrical tube (r=0): 6r=0, 6u=0 and (6z/(r=0,
On the surface of the sphere: 6r=6u=6z=0,
At the outlet of the flow: 6r=0, 6u=rv, (6z/(r=0 and p=Re(rv)2/2.

In the stationary cylinder instance, v and 6u vanish identically. An outlet specification of
pressure is necessary to remove the indeterminacy concerning the arbitrary level of pressure.

5. RESULTS AND DISCUSSION

Finite element results are presented for Newtonian and non-Newtonian flows. The viscous
rheological parameterisation of expressions (3a–c) are used to model the non-Newtonian fluid
properties. Models 1 and 3 have two adjustable parameters, We and n, whilst Model 2 has a
single adjustable parameter We. Calculations are performed for different values of We ranging
from 0 to 5, and n ranging from 0.3 to 1. For the stationary cylinder case, calculations are
performed with Reynolds number ranging from 0 to 200. For rotating flow, all calculations are
computed at Re=1 and a rotation rate v=1, i.e. Ta=0.25. There are no theoretical solutions
known for these constitutive models. Mesh refinement, together with comparison with numer-
ical results from the literature, provide a check on the accuracy of present results. Rotating
flows are denoted by a non-zero Taylor number Ta. In the field plots, the flow is upward past
the sphere and ten equally spaced contours are shown between the maximum and the
minimum value, with the exception of the streamfunction plots, in which case contours are
more densely packed towards the centreline of the cylinder.

5.1. Newtonian drag

There is no closed form expression for the drag on a sphere falling through a cylindrical tube
of Newtonian fluid. The most well-known approximate method for low Reynolds number
flows was developed by Bohlin [7], who used a method of reflections. This formula is given in
terms of a wall correction factor or drag coefficient, K, as follows

K$
�

1.0−2.10443
�a

R
�

+2.08877
�a

R
�3

−0.94813
�a

R
�5

−1.372
�a

R
�6

+3.87
�a

R
�8

−4.19
�a

R
�10

+…n−1

. (15)
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Table III. Stokes drag coefficient for Newtonian flow, various a/R

Haberman and Sayre [8]Haberman and Sayre [8]a/R Finite elementBohlin [7] reflection
solution (15) resultsexact theory solution (16)

1.2632 1.263 1.2633 1.28330.1
1.6797 1.67920.2 1.6794 1.680

2.371 2.36970.3 2.3697 2.3865
3.596 3.60833.58173.58840.4

5.9228 5.970 5.8700 5.94900.5
11.135 10.59260.6 11.0566 11.0453

(21.424724.955 24.4812(36.6017)0.7
(49.0229) 73.50480.8 (−11.7567) 73.555

Also, Haberman and Sayre [8] developed an approximate expression for the wall correction
factor of the form

K=
�

1.0−0.75857
�a

R
�5n

×
�

1.0−2.1050
�a

R
�

+2.0865
�a

R
�3

−1.7068
�a

R
�5

+0.72603
�a

R
�6n−1

. (16)

Rigorously, Equations (15) and (16) are valid only for a/R50.6. An exact solution for the
Stokes drag coefficient is provided by Haberman and Sayre [8]. This was determined numeri-
cally as an approximate solution.

For a/R=0.1–0.8, Table III provides a comparison of the finite element results with exact
and approximate solutions of Haberman and Sayre, and the reflection solution of Bohlin.
Values in parentheses are included for a/R\0.6 for completeness and to illustrate the
departure from the respective theoretical Equations (15) and (16), as they shift beyond their
range of validity. A comparison with the experimental results of Fidleris and Whitmore [31] is
shown in Figure 4, where there is good agreement, within O(1%). Against the finite element

Figure 4. Stokes drag coefficient versus a/R.
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Table IV. Stokes drag coefficient, a/R=0.5

Literature Technique Drag coefficient

5.9467Boundary integralHarlen [34]
5.977FEMLuo and Tanner [35]

Crochet and Legal [36] FEM 5.9475
Lunsmann et al. [37] FEM 5.9474

BEM 5.9466Zheng et al. [38]
Bohlin [7] reflection solution (15) Reflection method 5.9228

5.970Exact theoryHaberman and Sayre [8] exact theory
Haberman and Sayre [8] solution (16) Approximate theory 5.8700

5.9490Present finite element result—M2 mesh FEM

results there is close agreement to B2%, with the solution of Bohlin up to a/R=0.6, and the
exact solution of Haberman and Sayre, which is also shown. The results of this study show
good agreement with the numerical solutions of Carew and Townsend [32], Tullock et al. [33]
and Harlen [34].

The geometric ratio a/R=0.5 is selected as a benchmark for testing accuracy. The
calculations in the Newtonian limit are assessed by comparison with the Stokes drag coefficient
obtained by several independent techniques listed in Table IV. The finite element results find
close agreement with those in the literature [34–38]. Note that the results of Luo and Tanner
[35] and Haberman and Sayre [8] are quoted to three decimal places.

Solution convergence for Stokes flow with decreasing polar mesh size is confirmed in Table
V for a/R=0.5 with structured meshes, and a/R=0.2 on unstructured meshes. Drag decreases
for a/R=0.5, yet increases for a/R=0.2. On the basis of these results, meshes M2 and AM3
for the stationary cylinder case, and meshes M2 and AM2 for the rotating case are selected for
further consideration.

Brenner and co-workers [10] provide a theoretical expression for pressure drop on a falling
sphere settling in a long cylinder for Stokes and Oseen regimes as

(DP)Ac

D
=2

�
1−

2
3
�a

R
�2n

+O
�a

R
�3

. (17)

Here, DP is the pressure drop created by the motion of the sphere settling along the axis and
Ac is the cylinder cross-sectional area. The pressure drop to force–drag ratio predicted by the
finite element simulations for Stokes flow, with a/R=0.5 and 0.2, is 1.6685 (on M2 mesh) and
1.9470 (on AM3 mesh), respectively. This is noted to be within O(0.1)% and less than that of
Equation (17), which provides comparable values of 1.6667 for a/R=0.5 and 1.9467 for
a/R=0.2.

Table V. Stokes drag coefficient, convergence with decreasing polar mesh size

Mesh Mesh size on sphere Drag coefficient

M1 (a/R=0.5) 0.1428 5.9930
M2 (a/R=0.5) 0.0748 5.9490

5.94050.0383M4 (a/R=0.5)

AM1 (a/R=0.2) 1.66510.1428
0.0748AM2 (a/R=0.2) 1.6751

AM3 (a/R=0.2) 1.67920.0383
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Figure 5. Newtonian drag coefficient versus Re.

Fayon and Happel [9] obtained a semi-empirical equation for the drag coefficient in terms
of Reynolds number for Newtonian flow as

K=
!�

1−2.105
�a

R
�

+2.087
�a

R
�3n−1

+
�C�

CS

−1
�"

, (18)

where Cs=24/Re is the drag coefficient according to Stokes law, and C� is the drag coefficient
in an unbounded medium. Experimental data for C� were taken from Perry [39]. Figure 5
provides a log–log plot comparison of Newtonian finite element predictions with the semi-em-
pirical calculations borne out of Equation (18), displaying close correlation throughout the
range of Re, with rising drag coefficient for increasing Reynolds number.

For the bounded rotating flow problem, there are no known theoretical or approximate
expressions for the drag coefficient. It is observed from Table VI, that the drag experienced by
a sphere falling in a rotating fluid is slightly greater than that experienced in a non-rotating
fluid. Similar behaviour is observed in the experimental results of Maxworthy [20], and the
numerical calculations of Dennis et al. [26] for unbounded low Reynolds number flow, i.e.
Re51.

Table VI. Newtonian drag coefficient, a/R=0.5 and 0.2, Re=1

Drag coefficient non-rotating flowMesh Drag coefficient rotating flow
(Ta=0.25)

M2 (a/R=0.5) 5.9504 5.9511
1.69111.6734AM1 (a/R=0.2)

AM2 (a/R=0.2) 1.6837 1.6988
1.70051.6876AM3 (a/R=0.2)
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Figure 6. Drag coefficient of non-Newtonian fluid versus Re.

5.2. Non-Newtonian drag

Figure 6 compares the drag coefficient for different Reynolds numbers for non-rotating flow
for a/R=0.5 and 0.2. In all cases, drag enhancement is observed with increasing Reynolds
number in this log–log plot. Drag enhancement is more prominent for the a/R=0.2 case. For
a/R=0.5, the drag increases marginally for Reynolds number up to ten in this log–log plot,
and then increases more substantially for Re\10. Similar results are observed in Figure 5 for
Newtonian fluids. Drag coefficient values for Model 3, lie between those for Models 1 and 2,
reflecting the combined effects of shear-thinning and extension-thickening.

Figures 7 and 8 display drag coefficient trends with variation in the power-law index n for
Models 1 and 3. Decreasing n, whilst amplifying shear-thinning, spawns drag reduction. For

Figure 7. Drag coefficient versus power-law index n : a/R=0.5 and Re=1.
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Figure 8. Drag coefficient versus power-law index n : a/R=0.2, We=2.5 and Re=1.

a/R=0.2, a linear dependency on n emerges. For lower values of n, rotating flow generates less
drag than that for non-rotating flow; a trend that is reversed for larger values of n. The
additional extension-thickening behaviour supported by Model 3 over Model 1, gives rise to a
uniform elevation in drag across the range of n.

Calculations have been conducted for all three models for 05We55. The variation of drag
coefficient with increasing We is charted in Figures 9 and 10 for a/R=0.5 and 0.2,
respectively. For Model 1, increased shear-thinning provides drag reduction. For Model 2,
increasing extension-thickening stimulates drag enhancement. The drag in rotating flow is
observed to be larger than that for the non-rotating case, rotation giving rise to increased
extension-thickening. The finite element predictions for a/R=0.5 and non-rotating flow
correspond closely with the earlier investigation of Debbaut and Crochet [6]. For Model 3, the
drag coefficient first decreases to a minimum before increasing. This response is due to the

Figure 9. Drag coefficient versus We : a/R=0.5 and Re=1.
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Figure 10. Drag coefficient versus We : a/R=0.2 and Re=1.

initial domination of the shear-thinning properties of the model, prior to supression by
extension-thickening behaviour. The early dip in drag is more pronounced and persists over a
larger range of We at the wider gap setting of a/R=0.2 and lower value of n=0.5. This is
attributed to the change in n by inspection from Figures 7 and 8. For a/R=0.5 and n=0.8,
the drag coefficient for the rotating flow exceeds that for the non-rotating case; the converse
is true for a/R=0.2 and n=0.5. This is due to increased shear-thinning effects in the rotating
flow with decrease in n, as observed in Figures 7 and 8.

Table VII. Drag coefficient, convergence with decreasing polar mesh size,
non-rotating flow: Model 3, a/R=0.2, n=0.5 and Re=1

Mesh-AM3We Mesh-AM1 Mesh-AM2

1.68760.0 1.6733 1.6833
1.53481.53111.51921.0

1.47822.0 1.48181.4606
1.53013.0 1.54071.4952

1.63841.61441.57024.0
1.71175.0 1.75681.6642

Table VIII. Drag coefficient, convergence with decreasing polar mesh size,
rotating flow: Model 3, a/R=0.1, n=0.5, Re=1 and Ta=0.25

Mesh-AM2We Mesh-AM1

1.6911 1.69880.0
1.5057 1.51471.0

1.45791.44742.0
3.0 1.45091.4399

1.45661.44994.0
1.46125.0 1.4522
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The computed values of the drag coefficient as a function of We are shown in Tables VII
and VIII for Model 3 and a/R=0.2. These results are calculated with unstructured meshes of
AM1, AM2 and AM3 for non-rotating flow, and meshes of AM1 and AM2 for rotating flow.
With decreasing polar mesh size, the results for each mesh show an initial decrease in drag
coefficient followed by an increase, confirming adequate convergence trends with mesh
refinement.

When the sphere–cylinder gap is reduced, the results shown in Figures 6–10 indicate that
shear-thinning, extension-thickening and shear-thinning combined with extension-thickening,
can have a significant enhancing effect on the drag. This is due to the rapid decrease in the
degree of extension-thickening and shear-thinning as the ratio a/R diminishes, corresponding
to a widening of the gap.

5.3. Flow field

Qualitative changes in the flow field give rise to variation in the drag coefficient. For the
geometric ratio a/R=0.2, the influence of inertia and rotation on the flow field are examined
separately. Contours of streamfunction, velocity, stress, pressure and viscosity for Model 3 are
shown in Figures 11–13 at parameter settings of n=0.5 and We=2.5. Contour extrema are
provided in Table IX, where levels are taken at equal increments. In all cases, the flow
accelerates as the fluid approaches the sphere.

In non-rotating flow, as displayed in Figures 11 and 12 where Re increases from 1 to 100,
the increase in vortex length and intensity with inertia is clear. For Re=100, thin radial
velocity boundary layers develop adjacent to the sphere surface on the upstream side, and
changes in axial velocity are protracted a long distance downstream of the sphere. Pressure
extrema appear on the upstream and downstream surface of the sphere at Re=1. As Reynolds
number increases, the separation line shifts downstream, so that the attached recirculating
wake widens and lengthens. Therefore, the position of the minimum pressure point moves
upstream as Re increases from 1 to 100, with attendant changes in the stress field. Normal
stresses at Re=1, develop thin boundary layers near the upstream and downstream stagnation
points. At the larger value of Re=100, a steep normal stress boundary layer develops near the
sphere surface over the upstream portion. Shear stress at Re=1, develops lateral boundary
layers around either side of the sphere. For Re=100, the increased level of inertia produces an
upstream shift in the shear stress boundary layer, that significantly modifies the viscosity field
near the sphere surface.

At Re=1, adjustment of streamline patterns is minor between non-rotating and rotating
flows. For the rotating case, the downstream azimuthal velocity is shifted more toward the
sphere surface. Only the fields that stand apart from the non-rotating case are displayed in
Figure 13.

6. CONCLUSIONS

This study has provided a particular instance of a testing practical engineering application to
demonstrate the scope and power of the numerical procedure employed. The now well-estab-
lished performance of the numerical technique covers a wide range of flow situations and
applications, covering classical benchmark problems to industrial complex flows providing
validation for the implementation. This includes examples of flows in two and three dimen-

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 851–874 (1998)



SIMULATION OF PARTICLE SETTLING 869

sions [40–42], steady and unsteady conditions [43,44], isothermal and non-isothermal condi-
tions [45,46] for fibre suspensions [50], and Newtonian, inelastic [49] and viscoelastic materials
[47,48]. Industrial applications addressed include injection moulding [51] and wire-coating [52]
processes dealing with polymer melt flows.

Figure 11. Contours of streamfunction (8), radial velocity (6r), axial velocity (6z), pressure (p), stress components
(trr, tzz, tuu, trz) and viscosity (m); Model 3: a/R=0.2, Re=1, We=2.5 and n=0.5.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 851–874 (1998)



P. RAMESHWARAN ET AL.870

Figure 12. Contours of streamfunction (8), radial velocity (6r), axial velocity (6z), pressure (p), stress components
(trr, tzz, tuu, trz) and viscosity (m); Model 3: a/R=0.2, Re=100, We=2.5 and n=0.5.

The main conclusions for this settling flow case study may be summarised as follows. For
the stationary cylinder instance, accurate results are derived for the Stokes drag coefficient at
eight different sphere to cylinder radius ratios between 0.1 and 0.8. Increasing inertia causes
drag enhancement for Newtonian and non-Newtonian models alike. Drag coefficient values for
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Model 3, lie between those for Models 1 and 2, reflecting the combined effects of shear-thin-
ning and extension-thickening. To demonstrate the effect of rotation, comparisons have been
performed at Re=1 and for rotating flow with Ta=0.25. For the Newtonian problem, drag
coefficient for rotating flow is slightly greater than that in its non-rotating counterpart.

Figure 13. Contours of azimuthal velocity (6u), pressure (p), stress components (trr, tuu, tru, tzu) and viscosity (m);
Model 3: a/R=0.2, Re=1, Ta=0.25, We=2.5 and n=0.5.
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Table IX. Extrema contour levels for Figures 11–13: Model 3, a/R=0.2, We=2.5 and
n=0.5

Figure 13Flow field Figure 11 Figure 12
Re=1 Re=100 Re=1, Ta=0.25

Min. (*) Max (+)Min. (*) Max. (+) Min. (*) Max. (+)

3.1298 –8 0.0000 31.250 –0.0000
0.3897 ––−0.0918nr −0.1933 0.2171

– – 0.0000 2.5000nu – –
1.1165 –nz 0.0000 1.1249 −0.1977 –

−5.0847104.44 8.0708−26.617p −4.9296 7.8010
37.403 −2.8200trr −2.6545 3.1418 −8.7756 2.8309

––3.0184−41.467tzz −3.6693 2.8291
19.969 −1.5050tuu −1.4139 1.8356 −0.4326 1.7803
17.181 –trz −1.3276 2.9703 −17.422 –

1.9128– −0.0036–tru – –
−1.3233 1.5293tzu – – – –

1.44600.2331m 0.2444 1.4672 0.1051 7.6491

With decreasing power-law index, drag decreases monotonically for Model 1, a shear-thin-
ning fluid. At a wider gap setting of a/R=0.2, drag is linearly dependent on n. Drag for
rotating flow is slightly greater than that for the non-rotating case at larger values of n; a trend
reversed at lower values of n. The additional extension-thickening, supported by Model 3 over
Model 1, gives rise to an elevation in drag uniformly across the range of n.

Influence of variation of drag coefficient with increasing We may be summarised as follows.
For Model 1, increased shear-thinning provides drag reduction. Alternatively, for Model 2, an
extension-thickening fluid, drag enhancement is observed. This is true in both rotating and
non-rotating instances, with the larger drag emerging for rotating flow. For Model 3, a
combined shear-thinning and extension-thickening fluid, the drag first decreases to a minimum,
whilst shear-thinning dominates, before rising as extension-thickening takes over at larger
values of We. For a/R=0.5 and n=0.8, the drag for the rotating flow exceeds that for the
non-rotating instance, the situation being reversed for a/R=0.2 and n=0.5. This is due to
increased shear-thinning effects in the rotating flow with decreasing n.

In general for Model 3, the flow field is influenced more significantly by the introduction of
inertia than rotation. At a fixed unitary level of inertia, there are hardly any visible differences
in flow field between rotating and non-rotating instances. Likewise, in this respect, Models 1
and 2 display similar qualitative flow field structure to that described for Model 3.
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